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Abstract We present a new nonlinear axisymmetric finite element model for heat transfer and
powder deposition in rotational molding. Arbitrary Lagrangian Eulerian techniques are employed
to track the gradual growth of the plastic layer. Results using this approach compare well with
earlier 1-D models and with experimental data. Using the model to study the effects of locally
enhanced heat transfer on part wall thickness, we find that controlling the relative magnitudes of
radial and circumferential heat transfer is crucial in order to obtain desired wall thickness
profiles.

Introduction
Rotational molding (also known as rotocasting or rotomolding) is a process
used to manufacture hollow plastic products. Rotational molding is used to
produce chemical tanks, automotive and commercial aircraft parts, backyard
play equipment, toys, and many other items. It is an attractive alternative
to injection and blow molding because the molds are inexpensive and the
process can handle complex shapes, a wide range of part sizes, and variable
thicknesses.

Figure 1 shows a schematic of the rotational molding process. In the first
station (mold charging) very fine plastic powder (typically polyethylene) is
placed in a metal mold, which is then closed. In the second station (heating), the
mold is moved into an oven and rotated continuously about two axes. Speeds of
rotation are relatively low, typically 10-20 rpm. As a result, the rotation
distributes the powder to all areas of the mold by tumbling, rather than by
centrifugal action. The heating of the plastic powder is accomplished by
heating the mold from the outside. As the powder comes into contact with the
hot mold it is first heated and then melts onto the mold, gradually covering all
interior surfaces. The plastic layer continues to increase in thickness until all
the powder has melted. The mold and plastic are further heated to consolidate
the plastic. Oven set-point temperatures are typically 250-550ëC, although the
molds and parts typically only reach 200ëC during the cycle. Eventually the
still-rotating mold is moved from the heating station (oven) into the cooling
station. The external surface of the mold is cooled by cold air jets, mist sprays,
and water sprays. Finally, when the mold is cool, it is moved into the de-
molding station, the part is removed, and the cycle is complete. In practice, the
stations are arranged in a ring, and charging and demolding occur in the same

The current issue and full text archive of this journal is available at
http://www.emerald-library.com



HFF
9,5

516

physical location. An authoritative review on the subject of rotational molding
of plastics can be found in Crawford (1996).

There are several theoretical heat transfer studies available in the literature
on rotational molding. Rao and Throne (1972) presented an extensive analysis
of various aspects of the rotational molding process. With respect to the
thermal/fluid considerations, they proposed a complicated powder flow model
to describe heat transfer to the powder. In a later paper, Throne (1976) proposed
an alternative heat transfer model in which the powder was assumed to be in
static contact with the mold surface at all times. The latter model showed better
agreement with experimental data. More recently, Sun and Crawford (1993)
developed a model to explore internal heating and cooling during rotational
molding. In this model the plastic powder was treated as a static layer in
contact with the mold and heat transfer from the mold to the powder was
analyzed much like heat transfer in a packed particle bed. Nugent et al. (1992)
compared this model to experimental results for a wide variety of processing
conditions. In a recent series of papers, Gogos and Olson (Gogos et al., 1997a;
1997b; 1998; 1999; Olson et al., 1997) described a new theoretical model in which
the powder is assumed to be well-mixed, and presented one-dimensional
numerical approaches to the problem.

This paper reviews the theoretical model of Gogos and Olson and introduces
a new finite element approach specially developed for the general axisymmetric
numerical problem. This finite element method models both the heat transfer
and the gradual powder deposition on the inner mold surface, and can be
applied to a large number of realistic geometries. Because control of part wall
thickness can be used to improve part designs for greater strength, the finite
element techniques are then used to study the effects of spatially varying heat
transfer on part thickness.

The governing differential equations for the mathematical model are
reviewed in detail in the next section, and the numerical techniques employed
to obtain solutions are described in the section `̀ Finite element techniques''. The
following section, `̀ Verification'', describes the test cases employed to validate
the model. A section on `̀ Effects of locally enhanced heat transfer'' applies the
finite element techniques in examining the control of wall thickness to create
internal ribs in parts. The final section gives conclusions and discusses future
work.

Figure 1.
Rotational molding
process stations



Axisymmetric
finite element

models

517

Governing equations
For modeling purposes, rotational molding for parts of any geometry may be
divided into three distinct phases (Gogos et al., 1998). During phase 1 the mold
is heated while spinning biaxially. Phase 1 is defined as lasting until the inside
wall temperature of the mold locally reaches the melting temperature of the
plastic. During phase 2 the available plastic powder is deposited as a molten
layer on the inner surface. Phase 2 ends when all of the powder has been
deposited. During phase 3 the molded plastic undergoes further heat transfer,
solidifies, and eventually cools to the demolding temperature.

Although the equations can be written more generally, the following model
assumes an axisymmetric geometry with constant material properties.
Consequently, temperature is a function only of the radial coordinate, axial
coordinate, and time. In addition, the current study addresses only phases 1
and 2 of the rotational molding process. (By the end of phase 2, the relative part
wall thicknesses have been established. The viscosity of the molten plastic is so
high that essentially no plastic migration occurs during phase 3.)

Phase 1
Figure 2 schematically indicates a typical geometry for phase 1, which is
modeled as a straightforward transient heat conduction problem for the mold.
The transient conduction equation in the mold region (Vm) reduces to :

kmr2T � �mcm
@T

@t
in Vm �1�
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Figure 2.
Geometry for phase 1
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Here km, �m, and cm are the conductivity, density, and specific heat of the mold
respectively, T is the temperature of the mold, and t is time. Initially, the mold
is assumed to be at some known ambient temperature, Ta.

The mold is placed in an oven which is assumed to be at a constant
temperature To. Heat is transported due to convection at the outer (So) and
inner (Si) surfaces of the mold which is described by:

ÿkm
@T

@n
� ho�T ÿ To� on So �2�

ÿkm
@T

@n
� hi�T ÿ Ti� on Si �3�

where Ti is the temperature of the well-mixed powder, hi is the effective heat
transfer coefficient for energy transfer to the powder from the mold, ho is the
external convection coefficient, and n is the unit outward normal from each
surface. (The heat transfer parameters ho and hi may vary over each surface.)

The heat balance relation for the powder itself gives

mpcp
dTi

dt
�
Z

Si

hi�T ÿ Ti� dSi �4�

with mp the mass of the powder and cp the specific heat of the powder. Because
of the assumption that the powder is well-mixed, and consequently has only a
single effective temperature, this is the only equation for the powder and it
involves the integral of the heat transported from the entire inner mold surface.
In writing this equation, we have neglected the thermal capacitance of the air
compared to the thermal capacitance of the powder. The initial temperature of
the powder inside the mold is assumed to be the ambient temperature,
Ti�0� � Ta. This phase ends when the inside surface of the mold locally
reaches the melting temperature of the plastic, Tm.

Phase 2
Figure 3 schematically indicates a typical geometry for this phase. Phase 2
begins when the powder that is in contact with the inner mold surface starts to
melt and deposit on the inner surface. In our earlier work on spherical models
for rotational molding (Gogos et al., 1997a, 1997b, 1998, 1999; Olson et al., 1997),
phase 2 began at the same time for all points on the mold inner surface.
However, in this study one of the crucial modifications is to allow the transition
to phase 2 to occur at different times for different locations in the model.

In addition to the mold, the domain in phase 2 comprises a growing plastic
layer on the inner mold surface. The heat transfer in the mold is governed by
the same transient conduction equation, equation (1). The transient conduction
equation for the plastic layer (region Vp) which grows with time is described by
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kpr2T � �pcp
@T

@t
in Vp �5�

where kp, �p, and cp are the conductivity, density, and specific heat of the
molten plastic respectively. At the outer mold surface heat is continually added
to the mold by convection from the oven as described by equation (2). At the
plastic-mold interface, continuity of the heat flux is required.

At the plastic inner (free) surface Sp, two conditions must be imposed. For
the plastic deposition to continue, the temperature at the plastic surface has to
be equal to the melting temperature of the powder. Hence,

T � Tm on Sp �6�

In addition, at the plastic surface the local heat flux is divided between heating
and melting the powder (latent heat L) that is in contact with the surface and
convecting heat to the bulk powder. This is described by:

ÿkp
@T

@n
� �p� _xS � n��cp�Tm ÿ Ti� � L� � hi�Tm ÿ Ti� on Sp �7�

In this expression the rate of normal growth of the plastic layer is given by
� _xS � n�, where xS is the position vector (coordinates) of the free surface and n
is the unit outward normal vector from the molten plastic layer.

In this phase, the mass of the powder left inside the mold decreases with
time as it is consumed to form the plastic layer. Hence the heat balance
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Figure 3.
Geometry for phase 2
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equation for the powder itself becomes

mpcp
dTi

dt
�
Z

Sp

hi�Tm ÿ Ti� dSp �
Z

Si

hi�T ÿ Ti� dSi �8�

where

mp � mo ÿ
Z

Vp

�p dVp �9�

In equation (8), it is to be understood that the integral of the heat transferred to
the powder is taken over the plastic inner surface (Sp) plus any exposed inner
mold surface (Si) where powder has not yet begun to deposit. This phase ends
when all of the available powder (mo) deposits on the mold surface, i.e. when
mp � 0.

Note that the well-mixed assumption for the powder simplifies the model
substantially. Rao and Throne (1972) investigated the effect of rotational speed
on the powder-end time. They showed that this time decreases with increasing
rotational speed and asymptotically approaches a constant value at about 10-20
rpm, which is within the range of typical rotational molding speeds. Hence, it
can be inferred that the powder becomes well-mixed under typical conditions of
rotational molding. In addition, it is clear from these 10-20 rpm rotational
speeds that centrifugal effects and viscous dissipation within the thermoplastic
powder are not likely to be significant in a heat transfer model for rotational
molding.

Finite element techniques
The governing equations presented above were solved using an arbitrary
Lagrangian Eulerian finite element technique. Euler backward (fully implicit)
time integration was employed, and at each time level a full Newton-Raphson
iteration was employed to solve the nonlinear equations. In order to solve the
equations by finite element techniques a `̀ weak form'' of the governing
equations is created, the domain is discretized into finite elements and element
matrices are calculated, and finally the element contributions are assembled
and solved. These steps are given in more detail in what follows.

Weak forms
In phase 1 the problem is a linear transient conduction problem. The weak form
for the conduction in the mold, including the exterior and interior convection
boundary conditions, becomesZ

Vm

kmrT � rT dVm �
Z

Vm

�mcmT
@T

@t
dVm
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�
Z

So

Tho�T ÿ To� dSo ÿ
Z

Si

Thi�T ÿ Ti� dSi � 0 �10�

Here a bar over a variable indicates a virtual variation in that variable, in the
usual finite element sense (Bathe, 1996). For the powder itself the weak form is
simply

Timpcp
dTi

dt
ÿ
Z

si

Tihi�T ÿ Ti� dSi � 0 �11�

Plastic deposition begins during phase 2, and the motion of the plastic free
surface is taken into account by an arbitrary Lagrangian Eulerian (ALE)
technique (see, for example, Nikitpaiboon and Bathe, 1993; Ghosh and Moorthy,
1993; Hu and Liu, 1993; Liu et al., 1992; Nomura and Hughes, 1993; Ghosh and
Kikuchi, 1991). In an ALE approach nodal point movement is independent of
the movement of the material itself, and may be specified to reduce mesh
distortion. For our models this reduces to `̀ stretching'' the existing mesh in a
time-dependent fashion during the analysis to cover the entire plastic region,
and modifying the calculation of the time derivatives so that

@T

@t
� dTnode

dt
ÿ _xnode � rT �12�

where dTnode

dt
is the rate of change of the temperature with time following the

nodal point, and _xnode is the velocity vector for the node.
The weak form for the mold and plastic becomesZ

So

Tho�T ÿ To� dSo �
Z

Vm

kmrT � rT dVm �
Z

Vm

�mcmT
@T

@t
dVm

�
Z

Vp

kprT � rT dVp �
Z

Vm

�pcpT
@T

@t
dVp

�
Z

Si

Thi�T ÿ Ti� dSi �
Z

Sp

Thi�T ÿ Ti� dSp �
Z

Sp

T�p� _xS � n�

�cp�Tm ÿ Ti� � L� dSp � 0 �13�
where it is understood that equation (12) is used in the transient integral for the
plastic. In equation (13) the integral over Si is implied to be only over the
exposed surface of the mold, where powder deposition has not yet begun.
Notice that this weak form includes the exterior boundary condition (equation
(2)), the mold/molten plastic heat balance, the molten plastic/powder heat flux
balance (equation (7)), and the heat transfer from the exposed mold surface
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(equation (3)). The plastic surface temperature condition (equation (6)) is used to
determine the new position of the plastic free surface during the nonlinear
iteration.

The weak form for the powder itself is written as

Timpcp
dTi

dt
ÿ
Z

Sp

Tihi�Tm ÿ Ti� dSp ÿ
Z

Si

Tihi�T ÿ Ti� dSi �14�

and the mass of the powder is adjusted in each iteration according to equation
(9). Once again, the integral over Si is implied to be only over the exposed
surface of the mold, where powder deposition has not yet begun.

Finite element discretization and matrices
Phase 1 discretization. Figure 4 shows a typical finite element discretization of
the axisymmetric domain for phase 1. The discretized domain comprises
exterior elements, mold elements, plastic elements and the interior elements.
The exterior convection boundary condition is handled by linear (two-node or
three-node) elements with two unknown temperatures (since To is known). The
three-node or four-node interior element accounts for the powder equation
(equation (11)), as well as the internal convection on the mold. As many mold
elements (three-node, four-node, six-node, eight-node or nine-node) as required

interior
elements

exterior elements

Ti

mold elements

exterior
elements

mold
elements

interior
elements

Figure 4.
Finite element
discretization for
phase 1
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can be used to capture the temperature variation in the solid mold. In typical
rotational molding analyses the temperature is nearly uniform across the
thickness of the mold and very few elements are required for accuracy. In phase
1, the plastic elements are collapsed onto the inner surface of the mold ± they
have zero size and uniform temperature[1]. Although these elements are not
used in phase 1, their presence allows a seamless transition to phase 2, when
they will begin to grow.

Using standard finite element techniques (Bathe, 1996), the element matrices
can be derived. The element matrices consist of the element forcing vector,
element stiffness matrix, and the element mass matrix.

Phase 1: mold elements. We discretize the mold terms in the weak form using
standard isoparametric shape functions. In our implementation they may have
three or six nodes if they are triangular, and may have four, eight or nine nodes
if they are quadrilaterals. In any case, the temperature, radial coordinate, and
axial coordinates are given by

T � NT; r � Nr; and z � Nz �15�

where

N � �N1 N2 ::: Nl �; TT � �T1 T2 ::: Tl �;

rT � �r1 r2 ::: rl �; zT � �z1 z2 ::: zl �;

Nj = shape function for node j,

Tj = temperature of node j,

rj = radial coordinate of node j,

zj = axial coordinate of node j,

l = number of nodes per finite element.

The forcing vector for the mold elements can be written from the weak form as,

Fe
mold �

Z 1

ÿ1

Z 1

ÿ1

kmBT c
@T

@r

@T

@z

� �
rjJjdqds�

Z 1

ÿ1

Z 1

ÿ1

�mcmNT @T

@t
rjJjdqds

�16�

where

B � Jÿ1
@N1

@q
. . . @Nl

@q
@N1

@s
. . . @Nl

@s

" #

and the Jacobian is given by
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J �
@r
@q

@z
@q

@r
@s

@z
@s

" #
:

(Here we use q and s as the local coordinate system within a finite element.)
The element stiffness matrix for the mold elements is given by

Ke
mold �

Z 1

ÿ1

Z 1

ÿ1

kmBTBrjJjdqds; �17�

while the element mass matrix for the mold elements is

Me
mold �

Z 1

ÿ1

Z 1

ÿ1

�mcmNTNrjJjdqds: �18�

Phase 1: exterior elements. The exterior elements are typical convection
elements, either 2-node or 3-node line elements. The forcing vector for the
exterior elements reduces to,

Fe
ext �

Z 1

ÿ1

hoN
T�T ÿ To�rjJjds �19�

where s is the local coordinate within the line element and J is the usual one-
dimensional element Jacobian matrix. The stiffness matrix for the one
dimensional exterior elements is

Ke
ext �

Z 1

ÿ1

hoN
TNrjJjds �20�

Phase 1: interior elements. All the interior elements contain two or three surface
nodes and share a common powder node which lies at an arbitrary location,
often taken near the geometrical center. The forcing vector for the interior
element has two components:

Fe
int �

Fs

Fi

� �
�21�

The Fs term acts on the (two or three) surface nodal temperatures, while Fi acts
on the powder node temperature. These components can be given by

Fs �
Z 1

ÿ1

hiN
T�T ÿ Ti�rjJjds �22�

and

Fi � mpcp

2�Eint

dTi

dt
ÿ
Z 1

ÿ1

hi�T ÿ Ti�rjJjds �23�
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Here Eint is the total number of interior elements, and appears in equation (23)

to correct the total assembled powder mass. Note that the integral in the

powder term (equation (23)) is still over the surface element.

The stiffness matrix for the interior elements is then given by

Ke
int �

Kss Ksi

KT
si Kii

� �
�24�

where Kss acts on the (two or three) surface nodes, Kii acts on the powder node,

and Ksi couples the two sets of nodes. The corresponding stiffness entries are

given by

Kss �
Z 1

ÿ1

hiN
TNrjJjds �25�

Kii �
Z 1

ÿ1

hirjJjds �26�

and

Ksi � ÿ
Z 1

ÿ1

hiN
TrjJjds �27�

The mass matrix has a similar structure, but only the term corresponding to

the powder temperature is non-zero:

Mii � mpcp

2�Eint
�28�

Phase 2 discretization. Figure 5 shows a typical finite element discretization of

the axisymmetric domain for phase 2. No new elements are introduced in phase

2, but two changes are made in the calculations performed. The interior

elements now begin to move inward at a rate determined by the melting of the

powder, and the plastic elements expand inwards in proportion to the motion of

the interior elements.

In addition, the mass of the powder decreases with time and hence a degree-

of-freedom associated with the mass is introduced. The element matrices for

the mold and exterior elements are unchanged.

Phase 2: interior elements. Once phase 2 begins, the interior elements move

inward to account for the accumulating plastic layer. Consequently, each

surface node has radial and axial displacement unknowns as well as a

temperature degree-of-freedom.
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The forcing vector for the interior element now contains four terms:

Fe
int �

Fs

Fi

Fr

Fz

2664
3775 �29�

where

Fs �
Z 1

ÿ1

hiN
T�T ÿ Ti�rjJjds�

Z 1

ÿ1

NT�p� _xS � n��cp�Tm ÿ Ti� � L�rjJjds

�30�

and

Fi � mpcp

2�Eint

@T

@t
ÿ
Z 1

ÿ1

hi�T ÿ Ti�rjJjds �31�

These terms couple the energy from the surface and the energy to the powder.

The movement of the nodes is governed by the second two forcing terms:

Ti interior
elements

exterior elements

mold elements

plastic elements

Figure 5.
Finite element
discretization for
phase 2



Axisymmetric
finite element

models

527

Fr �
�Tm ÿ T1�nr1

�Tm ÿ T2�nr2

. . . . . . . . .
�Tm ÿ Tl�nrl

2664
3775 �32�

Fz �
�Tm ÿ T1�nz1

�Tm ÿ T2�nz2

. . . . . . . . .
�Tm ÿ Tl�nzl

2664
3775 �33�

Here, Tl is the temperature at a surface node, and nrl
and nzl

are the radial and
axial components of the element normals evaluated at the surface nodes. This
ensures that the nodes move normal to the surface, and that the motion for a
node stops when the temperature of that node reaches Tm. In addition, the
motion at a node associated with two adjacent surface elements will contain the
sum of the two local normals once the elements are assembled.

The stiffness matrix is written as

Ke
int �

Kss Ksi 0 0
KT

si Kii 0 0
0 0 Krr 0
0 0 0 Kzz

2664
3775 �34�

The Kss, Ksi , and Kii terms are identical to those in phase 1 (equations (25), (27)
and (26)).

The Krr and Kzz terms, in our current formulation, are simply penalty terms
given as

Krr � KBIG

1 0 . . . 0
0 1 . . . 0

. . . . . . . . . 0
0 0 0 1

2664
3775 �35�

Kzz � KBIG

1 0 . . . 0
0 1 . . . 0

. . . . . . . . . 0
0 0 0 1

2664
3775 �36�

Note that the normal displacement of a surface node in any given iteration is
therefore given by the temperature error (T ÿ Tm) divided by KBIG. By
adjusting KBIG, the user can select how rapidly the surface nodes iterate
towards the equilibrium configuration within any given time step. Small values
imply large steps, but can cause severe overshoots and consequent instabilities.
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Large values of KBIG imply small steps and good stability, but can result in
significant increases in computational time. (A typical value of KBIG for the
cases examined in this paper was 8.1�106.)

The mass matrix has only a single non-zero term, which associated with the
powder mass

Mii � mpcp

2�Eint

; �37�

where mp is the current mass of the powder.
Phase 2: plastic elements. Plastic elements are discretized using the standard

isoparametric shape functions. In our implementation they may have three or
six nodes if they are triangular, and may have four, eight or nine nodes if they
are quadrilaterals. Plastic elements have three degrees-of-freedom per node, in
general ± two displacements and one temperature. In our current
implementation the displacement of the plastic nodes is handled completely by
constraint equations, and no terms appear in the element matrices
corresponding to those unknowns. Hence the element matrices for the plastic
are quite similar to those of the mold:

Fe
plas �

Z 1

ÿ1

Z 1

ÿ1

kpB
T c

@T

@r

@T

@z

� �
rjJjdqds�

Z 1

ÿ1

Z 1

ÿ1

�pcpN
T @T

@t
rjJjdqds

�38�

Ke
plas �

Z 1

ÿ1

Z 1

ÿ1

kpB
TBrjJjdqds �39�

Me
plas �

Z 1

ÿ1

Z 1

ÿ1

�pcpN
TNrjJjdqds �40�

Note that the @T
@t

term in the forcing vector (equation (38)) is handled as in
equation (12).

In addition, it is necessary to track the total mass of the deposited plastic.
This is calculated by integrating the mass of the individual plastic elements,
and summing the contributions in the forcing vector for the plastic elements

Fm �
Z 1

ÿ1

Z 1

ÿ1

�prjJjdqds �41�

This entry is simply used to accumulate the total mass consumed thus far in
the analysis, and hence we use Kmm � 1 to insert it into the structure of the
differential equations.
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Solution of assembled matrices
Once the element terms are calculated, they are assembled into global stiffness,
mass, and forcing vectors. Although the equations for phase 1 are linear, they
are solved by iteration to allow a seamless transition to phase 2. Hence, at each
time step we iterate (using a Newton-Rhapson iteration) on the implicit time
equation (Bathe, 1996):

tX0 � tÿ�t X� tÿ�t _X�t �42�

K� 1

�t
M

� �i

�Xi � ÿ tFi �43�

tXi � t Xiÿ1 ��Xi �44�
where �t is the time step size, the right superscript i is for the iteration number
within a single time step, and the left superscript t indicates the time level. Once
the change in the X vector is small (when F is nearly zero) the iteration at this
time level is terminated and the time level is incremented.

Verification
Spherical mold
In our previous studies of rotational molding (Gogos et al., 1997a, 1997b, 1998,
1999; Olson et al., 1997), we developed a `̀ base case'' for our spherically
symmetric finite difference model, in which polyethylene powder is rotationally
molded within a spherical steel mold. The inner radius of the mold was 0.214m
and the mold thickness was 0.0021m. The parameter values for the base case
are shown in Table I. These property values were estimated from data
available in the literature (Nugent 1990; Tadmor and Gogos 1979; Nugent et al.,
1992) and are thus somewhat approximate.

For the current study, we initially tested a full axisymmetric finite element
model of this base case against the 1-D spherically symmetric finite difference
model. The results obtained were excellent, with axisymmetric finite element
results for mold and powder temperatures within 1 per cent of the spherically
symmetric finite difference results at all times.

Cylindrical base case mold
In Nugent's experiments (1990), a `̀ cube'' mold with a large flange was
employed in the tests. We created the spherical base case model for our
previous papers (Gogos et al., 1997a, 1997b, 1998, 1999; Olson et al., 1997) by
matching the mass and surface area of the cube mold. In a similar fashion, the
axisymmetric model shown in Figure 6 was developed: each portion (top, sides,
base, flange) of the mold was matched for surface area and volume with its
counterpart in the cube mold.
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Figure 6.
Mesh geometry for
axisymmetric base case
analysis

Table I.
Parameters for base
case testing

Mold parameters
cm = 490J/(kg�K)
km = 56.3W /(m�K)
�m = 7,830kg/m3

Plastic parameters
cp = 2,430J/(kg�K)
kp = 0.23W/(m�K)
�p = 751kg/m3

L = 180,000J/kg
mo = 1.49kg
Tm = 128ëC

Heat transfer coefficients
hi = 5.0W/(m2 � K)
ho = 19.3W/(m2 � K) for air

Other parameters
Ta = 25.2ëC
To = 330ëC
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This axisymmetric model was employed, with the other base case parameters,
to obtain temperature and plastic layer thickness results as a function of time.
The difference in temperature between the center top, the center bottom, and
the middle of the vertical sides is very slight, reaching a maximum of only 1ëC
by the end of phase 2. (Figure 6 indicates the locations under discussion.) The
temperature difference between the flange tip and the flange inside base is
somewhat larger, reaching a maximum of 5ëC at the end of phase 2. However,
Figure 7 shows the substantial differences in temperature between the center
top and the flange inside base. The center top temperature rises at a
substantially higher rate than the flange inside base in phase 1, but rises much
more slowly in phase 2 so that by the end of phase 2 the center top is actually
14ëC cooler than the flange inside base. Figure 7 also shows the spherical model
results for the base case, which lie between the two axisymmetric model
extremes for the first 250 seconds, but which actually fall below the
axisymmetric model toward the end of phase 2. The temperatures predicted by
the axisymmetric model agree well with experimental data (scanned
electronically from Nugent (1990)). Figure 8 shows the plastic thickness shortly
after the onset of phase 2, at time 250 seconds. (Plastic layer shown ten times
mold scale.) The cooler flange area has not yet seen substantial plastic
deposition, although the walls far from the corners have a coating of molten
plastic. However, by the end of the molding cycle, the plastic layer is mostly
uniform along the inner surface of the mold.
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Effects of locally enhanced heat transfer
In practice, air jets (`̀ air amplifiers'' or `̀ transvectors'') are employed to enhance
the heat transfer at selected locations on the mold surface, allowing thin part
walls to be thickened locally. This can be used to improve part quality near
difficult mold contours, or to increase part thickness in high stress regions. In
this section we will examine the effect of locally enhanced heat transfer on the
ability to create `̀ internal ribs'' in an otherwise uniform spherical part. Our
focus will be on which heat transfer parameters control the size and shape of
the ribs.

Figure 9 indicates the geometry under consideration. We consider a
spherical mold with an external heat transfer coefficient ho over the majority of
its surface. In a region of width w near the centerline of the sphere, the heat
transfer coefficient is increased to h. The spherical base case is used as the
starting point for the analysis, so that R = 0.214m, the mold thickness is �m =
0.0021m, and the other parameters are given in Table I.

For our original spherical base case model studies, there were eight
dimensionless groups of interest which are reviewed in Table II (Gogos et al.,
1998). Here we have introduced only two new variables to the original base case
problem, which may be accounted for in two new dimensionless groups:

. the angle w=R � �jet ; and

. the relative heat transfer coefficient hw=hoR.

Figure 10 shows the final plastic layer profile for the base case, when w=R is
held fixed at 0.077 (approximately 4ë) and the relative heat transfer coefficient
is varied. Notice that the size of the ribs is quite large, with the plastic thickness

Mold

Molten Plastic

Figure 8.
Non-uniform deposition
of molten plastic near
flange, with temperature
contours. Axisymmetric
finite element model for
base case analysis, time
250 seconds. Contour
lines at 130, 132, 134,
136ë C. Plastic layer
shown ten times mold
scale
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(�) equaling its mean value (�p) at an angle of roughly 20ë. This is true
regardless of the relative heat transfer coefficient, and despite the fact that the
enhanced region itself is only 4ë. In fact, varying the enhanced region size has
little effect on the ribs, as shown in Figure 11. Here the width of the enhanced
heat transfer region varies from approximately 1ë up to 9ë, with little effect on

ho

h

W

R

θjet

Figure 9.
Geometry for study of
locally enhanced heat

transfer

Table II.
Dimensionless groups

associated with heat
transfer to spherical

base case

�2 � TmÿTa

ToÿTa
Plastic melting temperature

�3 � �pcp�p

�mcm�m
Plastic to mold thermal capacitance ratio

�4 � hi

ho
Inside to outside heat transfer coefficient ratio

�5 � L
cp�ToÿTa� Energy required for phase change

�6 � kp

�pho
Plastic conductance

�7 � �m

R Mold curvature effect

�8 � km

�mho
Mold conductance

�9 � �p

R
Plastic curvature effect
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the rib shape itself. This appears to be due to the rate of thermal diffusion in the
metal wall of the mold, which controls the size of the heated zone far more
strongly than the patterns we attempted to impose.

Next, we examined the effects on the plastic layer profiles of variations in the
original eight dimensionless groups. Figures 12 through 19 give the plastic
layer profiles. Several dimensionless parameters have essentially no effect:
plastic melting temperature (�2, Figure 12), inside to outside heat transfer
coefficient ratio (�4, Figure 14), energy required for phase change (�5, Figure
15), and plastic curvature effect (�9, Figure 19).

As shown in Figure 13, the plastic to mold thermal capacitance ratio (�3) has
a strong effect on the amplitude of the rib, but almost no effect on the width ±
the plastic layer thickness equals its nominal thickness at approximately 20ë
over a range of 100 times change in �3. The capacitance of the plastic layer
appears to have a large effect on how much plastic deposits in a given region,
but not on the extent of the region itself.

The plastic conductance (�6, Figure 16) and the mold conductance (�8,
Figure 18) show opposite trends. A high plastic conductance produces a
somewhat narrower and sharper rib, as does a low mold conductance.
Conversely, low plastic conductance and high mold conductance produce a
very wide, smoothed-out `̀ rib''.

The most unexpected result was the extremely strong effect of �m=R (�7,
Figure 17), which we have called the mold curvature effect. In our previous
studies (Gogos et al., 1997a, 1997b, 1998, 1999; Olson et al., 1997) we found that
the mold curvature had essentially no effect on the time required for powder
deposition in a spherically symmetric system. Here we see a strong effect,
which we explain as diagrammed in Figure 20. Heat from the oven enters the
mold, and follows two paths in this multidimensional case: circumferential heat
flow and radial heat flow. The relative resistances of these two paths
determines the amount of heat flow in each direction, and controls the
circumferential temperature gradients which themselves determine the plastic
deposition region. High plastic conductance or low mold conductance favor
radial heat flow, and the high temperature regions on the wall are small
(narrow, sharp ribs). Low plastic conductance or high mold conductance favor
circumferential heat flow, which reduces the circumferential heat gradients and
produces wide, smeared ribs.
�m=R is significant in this context because it is varied while other

parameters are held fixed. Molds which are thin compared to their radius will
tend to reproduce the enhanced heat transfer region as a sharp internal rib,
because circumferential heat transfer is suppressed. Molds which are thick
compared to their radius allow substantial circumferential heat transfer and
produce ribs which are not sharply defined.

These observations allow us to take the original base case mold and modify
it to produce well-defined ribs. The original mild steel mold material is replaced
by a low conductivity AISI 347 stainless steel (�m = 7,980kg/m3, cm = 480J/kg
K, km = 14.2W/mK) (Schmidt et al., 1993). In addition, the mold thickness is
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reduced by half, to 1.05mm. The resulting ribs are shown in Figure 21. For the
`̀ narrow'' rib, w=R was held at 0.077 (4ë), while the heat transfer coefficient in
the enhanced heat transfer region was decreased so that hw=hoR � 0:321 (to
reduce the height of the rib). This `̀ narrow'' rib is much better defined than in
the base case, although its width is still controlled by mold/plastic
conductivities rather than the enhanced heat transfer region width of 4ë. The
`̀ wide'' rib employed an enhanced heat transfer region with w=R � 0:397�23ë)
and hw=hoR � 1:646 (to increase the height of the rib). This rib has a width
which closely reproduces the enhanced heat transfer region.

Conclusions and future work
We have presented a new axisymmetric finite element method for the rotational
molding process. The method employs the single powder temperature model of
Gogos and Olson (1998). The nonlinear finite element method developed is
applicable through the end of powder deposition, and employs arbitrary
Lagrangian Eulerian techniques to track the gradual and nonuniform
deposition of the plastic layer on the inner surface of the mold. Results compare
well with computational results obtained with one-dimensional models, and
show good agreement with experimental data from the literature.

Using this finite element method, we have also studied the effect of locally
enhanced heat transfer on part wall thicknesses. By examining the various
dimensionless groups operating in rotational molding, we can identify
important heat transfer parameters for the control of plastic deposition. We
found that the relative importance of radial and circumferential heat transfer is
crucial in obtaining desired plastic layer profiles. This leads us to conclude that

Radial heat flow

Heat flow
from oven

Circumferential
heat flow

PLASTIC

MOLD

Figure 20.
Heat flow paths
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good control of plastic layer profiles through the use of enhanced heat transfer
can only be obtained when circumferential heat transfer is limited by the use of
thin, relatively low conductivity mold materials.

In the future we will examine cooling and solidification of rotationally
molded parts in a multidimensional setting. In this context we hope to examine
the effects of the kinetics of solidification, and ultimately compute stresses and
related part-mold separation in general rotationally molded parts.

Note

1. For computational purposes, the volume of the elements is set to a small positive value

(4� 10ÿ12).
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